Claimsreserving —
should ratios be used?



Data

In any year, an insurer pays money in respect of events
that occurred that year, in the previous year, the year
before that, and so on.

Amount paid ($000's)
Accident year
Payment 2003 2002 2001 2000 |1999...
year:
2003 453 1217 745 559 361
2002 — 380 1084 632 470
2001 — — 396 | 856 | 502

Usually subdivided by class of business (e.g. CTP, WC, Public liability)
and often by territory, currency, or other variables.



Data —triangles

These values are usually presented as triangles:

Del
Accident 0 a%[ 2 3 4 2003
cciden
—Jpayments
year: _ 7 7
1999 344 828 502 47 361
/y //

2000 310 856 63 559
,//
2001 396 W /74‘1‘5/

2002 380/22‘17/ Future
2003 /453 \

Often cumulated (added) along rows (“paid to date’).
Sometimes case estimates added in (® “incurred”)

Claim counts (claims reported, finalised, etc).



Ratio models

What do we mean by aratio model?

For response variable, y, given a predictor, X:
on average, value being predicted b
Isamultiple of the predictor X; | ‘ Y,

E(y|x) = bx

Basic ratio assumption




Ratio models
j-1j <——=atagivendelay (], supressed)

In context of X{ a8
loss triangle: = _
Generally based on cumulative
array — paid or incurred or counts
X Yi
- pti— E(Yi]x) = bx
Xi+1 yi+1
bt




Development factor methods

Acci. Delay Delay
Y- g | 2 | 3 | 4. 0 | 1 | 2 | 3 | 4.
1999 | 344 | 828 | 502 | 470 | 361 (344 | 1172)| 1674 | 2144 | 2505
2000 | 310 | 856 | 632 | 559 ——>| 310 | 1166|| 1798 | 2357
2001 | 396 | 1084 | 745 cumulate o061 1480] | 2225
2002 | 380 | 1217 380 | 1597
2003 | 453 453
take ratios  Y;/X; / v
1172 / 344 = 3.41
1:0 2:1 3.2 (4.3
2000|(C 3.41)*1.43| 1.28| 1.17 — _
2001| 3.76| 1.54] 131 Aimistofind
2002] 3.74] 1.50 some “typical
2003| 4.20 ratio for each
column.




Development factor methods
Ratios

Aim isto find some

1.0 |21 [3:2 [4:3 “typical” ratio for
2000] 3.41| 1.43]| 1.28] 1.17 each column
2001] 3.76] 1.54] 1.31 '
2002 3.74| 1.50 Then pI’Oj ect out on
2003] 4.20 same hasis
Common choices include
- ordinary average Often, ratio is “judgementally
- weighted by x (chainladder)  sglected” rather than computed
- average of last kK years as an explicit average.

- geometric mean

|

The “basic ratio assumption” underlies amost all
development factor methods.



Ratio models

Assessing suitability of the basic ratio assumption —
E(y;[%) = bx

Two components of the assumption:

— Y, Increases linearly with x
— that line passes through origin

Why not plot y; vs X and see?




Plot of y vs X

Acci. Delay Ratios
Yo |1 2 | 3 | 4. 1:0 [2:1 [32 |43
1999 | 344 | 1172 | 1674 | 2144 | 2505 | [ 2000] 321 1.43| 128] 117
2000 | 310 | 1166 | 1798 | 2357 2001 3.76| 154 1.31
2001 | 396 | 1480 | 2225 20021 3.74| 1.50
2002 | 380 | 1597 20031 4.20
2003 | 453
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Ratio models

But wait: Since it’ s based on cumulative payments,
y includes payments already made: y = x+p

Really only predicting part of y not already in x (i.e.

P =y—X) since the x part is not prediction.

That Is, ratio assumption iseffectively:

E(y—x|x) = (b-1) x

or | E(p[X) =rx | (wherep=y-xisincremental, r=b-1)

Thisisthe predictive part of the ratio model



Ratio models

|s assumption | E(p|x) = rx |tenable?

Again, look at aplot of the data.

If weplot p vs X, what should we see?

(scatter about) a straight line through the origin

A

P
soper




Examples. Four arrays, plot of pvsx for first pair of years
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Intercept is not at origin for these arrays.
E(p|x) * rx !
E(p|]x) =a+rx ?

—while not aratio, does previous cumulative (X)
have some ability to predict current payment (p)?

(Arrays selected by taking the first 4 trianglesto hand that didn’t have
strong payment inflation®)



Calculate correlations and p-values:

Incr.(1) vs Cum.(O

300]
250]
200
1501
100
| ¢
50

| <

O

©

P 1%

20 40

60 80 100 120 140 160

Corr. =-0.040, P-value = 0.919

| Incr.(1) vs Cum.(0) |
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Corr. =-0.203, P-value = 0.630

[ Incr.(1) vs cum.(0) |

4,000,000
3,800,000
3,600,000
3,400,000
3,200,000
3,000,000
2,800,000
2,600,000
2,400,000
2,200,000
2,000,000
1,800,000
1,600,000
1,400,000
1,200,000

e

<
o 14
o

Correlation

p-value

T T T T
500,000 1,000,000

Corr. =-0.414, P-value = 0.235
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|s assumption | E(p|x) = rx | tenable?

Note: If corr(x, p) =0, then corr(rx, p) =0

If X, p uncorrelated, no ratio has predictive power

Ratio selection by actuarial judgement
can't overcome zero correlation.




If corr(Xx,p)=0, x like random numbers at predicting p

Experiment. Generate random numbers with the same
mean and variance as X. Use them to predict p.

How often do real X' sbeat random numbers?
(e.g. smaller MSPE)

Better be substantially more often than 50%!

Need to always check if previous
cumulative related to next incremental




Effect on relationship of inflation or increasing exposures

Incremental array
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In both cases increasing trend down each development (incr & cum)




Effect on relationship of inflation

| nduced tendency to increase together down columns.

|nflation

Looks like aratio effect in plot of p vsx,
but cause iIsa common trend across accident years.



Effect on relationship of inflation

|nflation

X [T Ip

X and p now correlated, due to a*hidden” variable.
(ignored rather than hidden)

Better predictions by using inflation directly, rather than
noisy proxy (X) to predict p.

After adjusting for inflation and exposures, is there any
remaining relationship between adjusted x & p’s?




Plots of p vs x with inflation and increasing exposure.

Incr.(1) vs Cum.(0) Incr.(1) vs Cum.(0)

| <> ] <>
0.3] 150,000
0.28 145,000

i 140,000
0.26E 135,000]
0.24; 130,000 @
0.22] E2ZRE

1 120,000
0.2 115,000
0.18 110,000

1 105,000
0.16; 100’0&);
014 ¢ 95,000

] 90,000}

O.(I)l - 0.62 - 0.63 - I IlO,IOOOI I I15,600I | I20,|000I
Raw data Adjusted for inflation and exposure
X has some predictive power X has little predictive power

(model requires intercept) (intercept alone is better)



Satistical models correspond to actuarial techniques

Many formal actuarial methods correspond to statistical models
(forecasts identical to the basic actuarial technique).

For example the modd!.
y; = bx+¢ &~ N(0,s%%¢)

Note E(y|x) = bx —clearly aratio modd.

d = 1: chain ladder (volume-weighted average dev.factor)
d = 2. average development factor
d = 0: (dev.factor wtd by vol?) / regression through origin



Satistical models correspond to actuarial techniques

In addition to calculation of standard errors, even forecast
distributions, many useful model diagnostics readily available

e.g. — std. residuals vs payment years (claims inflation)
— std. residuals vs development years (variance)
— gtd. residuals vs fitted (useful for checking O-intercept)
— influence diagnostics
— correlations in residuals across time

... many more



Variance assumption

We used p vs x plot to check ratio assumption. (poss. detrended)

What about variance assumption?

e.g. Chain ladder assumes Var(y,) = Var(p;) = s?x% withd =1

How to check?

(Only worth worrying about if assumption for mean is okay!)



Variance assumption

How to check Var(y) = Var(p) = s2x9 withd =1 ?

Could:
- plot std. residuals vs x, (or vsfitted) Pﬁ .
(spread should be constant) ¢ ° .

- plot residual$ vs x; (should "spread out” linearly with x; )|,
- plot log(residualg’) vslog x;. (should be ~linear, slope ~ d)

Generdly see Var(p) 4 E(p,)?. (Constant of proportionality
often ssimilar across devel opment periods.)

Var(y) = s2x often reasonable for claim numbers.



Satistical models correspond to actuarial techniques

Many non-ratio techniques (e.g. PPCI, PPCF) aso have
reproducing statistical models.

e.g. If y; IsPPCl, amodel like
yi=m+e & ~N(@O s

reproduces standard PPCI forecasts (but other possible models)



Superimposed inflation

Ratio models actually interfere with measurement and

prediction of changing superimposed inflation. Better to

mode

Superimposed (or social) inflation isvery common, ~ 'nerementals

Changing social inflation appears even in claim numbers:
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(again, not specially chosen — the first two claims numbers arrays | checked...)



The Chain ladder

E(ylx) = bx

To produce the chain ladder predictions, need a weighted
regression through the origin:

y; = bx e ~ N(0,s2x)

[Average development factor —just different weights:
& ~ N(0,5°%°) ]



The Chain ladder

Regression model for chain ladder:

y; = bx & ~ N(0,s°x)

Get standard regression diagnostics
—especially residual plots (e.g. vs payment year, vsfitted)

— also inference on parameters, influence diagnostics, etc



The Chain ladder

Mack data (incurred losses = cumulative paid + case estimates)

Cum.(2) vsCum.(0)
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Incr.(1) vs Cum.(0)

o
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Corr.=-0.117, P-value=0.764

Little inflation, so our ssimple diagnostic plots (y/x, p/x) work...




The Chain ladder

But also have diagnostic plots from the regression without
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Intercept:

std. res vsfitted
(needs intercept!)

std. res vs
payment
(calendar) year

(no inflation)



The Chain ladder

Further information from the regression with intercept:

Devel. |intercept ratio

Period|est. S.e. p-val |est. ratio-1 |s.e. p-val

0-1

1-2

2-3

3-4

45

5-6

6-7

Plainly don’t need both intercept and ratio!
Intercept alone turns out to fit substantially better.



Regression model with intercept:

E(y;) =a+ bx
Check plot of p vs X, and also inference on parameters.

If cov(X,Y) =0, best linear predictor” of Y isE(Y):

E( yl) = 4,
... predictions for rest of column: a8 (=y for example)

“(if X isthe only available predictor)



The Chain ladder

Intercept alone (wtd ave) turns out to fit substantially better.

Has smaller forecast variances

Forecasts more stable
(smilar answer leaving out last year, year before,...)

Normality is not unreasonable here (dlightly right skew),

[often have substantial skewness
— need to forecast distribution, not just mean
so model for errors more critical than usual in regression |



The Chain ladder

Several other models can reproduce chain ladder forecasts.
- not all have E(y|x)=bx within data

However: Out-of-sample prediction always has E(y|x) = bx

(or it couldn’t reproduce the equivalent ratio model)



The Chain Ladder

Out-of-sample predictive ability more important

= |mportant to check ‘ out-of-sample’ prediction errors

(NB: forecasting claims reserves
IS always out-of-sample)




The Chain Ladder

Out-of -sample prediction always has E(y|x) = bx

= |mportant to check ‘ out-of-sample’ prediction errors
especially for models without E(y|X) = bx internally

In particular, can check ratio assumption (e.g.
residuals vs fitted) and changing calendar
year trends (in residuals).




The Chain Ladder

Transpose | nvariance property

Use Chain Ladder to project incrementals Take
Incremental array, cumulate across, find ratios, project, and
difference back to incrementals

Now: tranpose*, do chain ladder, *(swap ﬁ )
transpose back ® same forecasts!

(equivalently, perform chain ladder ‘down’
not ‘across . cumulate down, take ratios
down, project down, difference back)




The Chain ladder - Transpose Invariance property
Some implications:

1) chain ladder does not distinguish between accident and
development directions.

2) There are parameters in both accident and development
directions: s striangle has 2s-1 parameters for the mean

(row params are hidden by conditioning on first column)
222,

vVvY




The Chain ladder - Transpose Invariance property

Chain ladder does not distinguish between accident and
development directions. They are not alike:

Log paid Log paid
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adjusted for trend in other direction




The Chain ladder

Additionally, chain ladder (and ratio methods in general)
Ignore abundant information in nearby data.

Log paid * If you left out a point,
T [ : how would you guess
2 ' ; | I
5 A N what it was?
e e o :
= 1l -oObservationsat same
o 1 2 /_\ s s 7 s delay very informative.
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The Chain ladder

Additionally, chain ladder (and ratio methods in general)
Ignore information in nearby data.

Log paid * |f you left out a p0| nt,
i .. how would you guess
s .
6.2 . ! ; s o What |t WaS'7
55 ]
0 g .
= 1 -Observationsat same

oz s s e delay very informative.

5y - nearby delays also
S Informative (smooth trends)
05 el 4
0 ’ % . (could leave out whole devel opment)
; S
$ o . .
11 ’ : Chain ladder ignores both




The Chain ladder

Chain ladder is atwo-way cross-classification model
(Kremer 1982, Taylor 2000)

Log paid

Like two-way ANOVA with

£ O I R incompl ete data
: o
5 ] .
" ]| -toatwo-way model, ordering

o+ 2 2 45 e7 sl of category labels don't matter —
regards these two arrays as
equivalent

8.5

75 ! ]
6.5

2 o€ ) ; Obviously they aren’t to ud

4.5

35+ ' T T T T T T
0 1 2 3 4 5 6 7

(one has scrambled labels— not hard to guess which)



The Chain ladder — Transpose Invariance

S striangle: chain ladder has 2s-1 parameters for mean

How many parameters needed to describe previous array?

Can describe shape of curve with 2 or 3 :g/\
Can describe stable accident year level with 1. |1

(most arrays similar — linear tail, smooth curve at start)

Chain ladder uses 20 for that array.
(and wastes those on ratios that e o .
don’t have predictive power) e

400 500 600 700 800 900
Corr. =-0.205, P-value = 0.570



The Chain ladder

What effects does overparameterisation have?
- fitting noise rather than signal
- high parameter uncertainty

- unstable forecasts (small change in data— large change
In prediction)

(projects and amplifies noise into the future)

For abasic illustration of why link ratios methods fail. Click here.



Administrator
Underline

http://www.insureware.com/about/ratio.shtml



