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Abstract

Patterns and changing trends among several excess-type layers on the same business tend to be closely related. The
changesin trend often occur at the same time in each layer. Therefore a good model for the changing trends in the
ground-up data will often be a good model for the various layers. As might be expected, after adjusting for the
trends, the corresponding values in each layer are till generally correlated. These relationships among layers should

be taken into account when reserving or pricing excess layers.

We describe a framework within which such relationships can be explicitly incorporated and taken account of when
reserving or pricing several excess layers. This framework allows for reserving and pricing for multiple layers with
changesin trends in the same periods, correlations between layers, and possibly equal trends or trend changes across
layers.



1. Introduction

Changesin trendsin loss development arrays (generally triangles) occur in three directions — along the

accident periods, the devel opment periods and the payment periods.

When dealing with loss arrays, it isimportant to look at the incremental data. That way, changesin trendsin
the payment period direction, which affect the incremental 1osses directly, can be observed and modeled. |dentifying
changes in this direction can have a very large effect on the forecast of outstanding losses. Additionally,
unidentified changes in this direction interfere with our ability to correctly identify trends and changesin trendsin

the other directions.

Trendsin loss development arrays occur in multiplicative fashion. For example, inflation and superimposed
inflation occur as multiplicative trends in the payment period direction. The tail is the development direction is
usually exponential. These effects encourage usto model the logarithms in the data, so changesin trend become
additive. Additionally, the data generally have larger standard deviation when the mean is larger, and often exhibit
skewness. Both of these features are usually absent after taking logarithms. Hence, after adjusting for inflation (as

appropriate) and normalizing for exposure, we take logarithms before modeling the trends in the data.

It is often necessary to reserve or price several excess-type layers. Naturally these are intimately related to the
original (ground up) loss array, and to each other. Indeed, the changes in trends for the data for each layer will occur
in the same places, though the changes will often be different in size, and the variability about the trends will be
different. If we model the trends using regression models, the models are the same for each layer, but the identified

parameters may be different. The layers, even after adjusting for trends, will often be correlated with each other.

It is possible to take advantage of the fact that the trends move together, leading to faster modeling, since
identified trend change in one array (often the original loss array is best) apply to al of the associated layers. Some
estimated trends may not be credible for an individual sublayer taken by itself, but when all the information is taken
together, and after appropriate model reduction, the estimate can become more precise. Moreover, knowledge of the

correlation between layers can be important when forecasting.



2 The Mod€

2.1 Model for asingle layer

Let ustake the array to be afull triangle, covering s periods (years). The formulas given here are easy to
modify for triangles missing the early payment years, or the later accident or devel opment years, but the discussion

isclearer if we present the simplest array.

Let y,,q be the lognormalized incremental payment in accident period w, development period d.
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Figure 1. Lognormalized incremental data array of dimension s.

Incremental data exhibits trends in three directions - accident year, payment year and devel opment year.
Development year trends are normally thought of as the "run-off" pattern. Payment year trends represent the
superimposed inflation (if the data are already adjusted for economic inflation). Accident years can move up and
down inlevel. Trends in these directions are related - atrend in the payment year direction will aso project onto the

accident year and development year directions, and vice versa.

Y

Figure 2. Trend directions

The payment year variable t can be expressed ast = w + d. That is, the payment year is just the sum of the
accident and development years. This relationship between the three directions implies that there are only two

independent directions.



The main idea is to have the possibility of parameters in each of the three directions — development years,
accident years and payment years. The parameters in the accident year direction determine the level from year to
year; often the level (after normalizing for exposures) shows little change over many years, requiring only a few
parameters. The parameters in the development year direction represent the trend in run-off from one development
year to the next. This trend is often linear (on the log scale) across many of the later development years, requiring
few parameters (often only one) to describe the tail of the data. The parameters in the payment year direction
describe the trend from payment year to payment year. If the original data are inflation adjusted before being
transformed to the log scale, the payment year parameters represent superimposed (social) inflation, which may be
stable for many years or may not be stable. This is determined in the analysis. We see that very often only a few
parameters are required to describe the trends in the data. Consequently, the (optimal) identified model for a
particular loss development array is likely to be parsimonious. This allows us to have a clearer picture of what is

happening in the incremental 10ss process.

Consider a single accident year (of log-data). We represent the expected level in the first devel opment year
by a parameter (a). We can model the trends across the development years by allowing for a (possible) parameter to
represent the expected change (or trend) between each pair of development years () represents the average change
between one development period and the next). We model the variation of the data about this process with a zero-

mean normally distributed random error. That is:

d
Ya=a+ Yy + &,
j=1

where £4is normally distributed with mean zero and variance ° —i.e. £4~ N(0,0?).

This probabilistic model is depicted below, for the first six development years.

b 4y p(d)

0 1 2 3 4 5 0 1 2 3 4 5

Figure 3. Probabilistic model for trends along a development year on the log scale and the original scale.

If there is no superimposed inflation or accident year changes, the above type of model may be suitable for a

real run-off triangle. However, usually there are changing trends in these directions.
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Figure 4. Plots of real data (log scale and original scale), normalized for exposures and adjusted for economic
inflation against delay with the means from afitted model. This data has no accident year trends or

superimposed inflation.

To model the trends in the three directions, we require three sets of parameters. The level of accident
period w in the first development period will be represented by a,. The change in level between development
period d-1 and d will be represented by )4. The change in level between payment period t-1 and t will be
represented by +. The basic model is

d w+d
Yud= O+ XY+ Dl + Eug &g ON(0,02) w=1,..,s d=0,..,s1
=1 h=2

This model may be fitted as an ordinary regression model. If there is indication of changing variance against
development period, we may model the variance process and use generalized least sguares regression to fit the

above model. For example, sometimes the variance islarger in the later devel opment periods.

Note that for any given triangle not all of the parameters are actually used — most of them are set to zero
(omitted from the regression) — most arrays require very few parameters, and a model that included al of them

would be highly overparameterized.
I mplementation as a regression model

The observations are stacked up in some order. For example, the data may be sorted by payment period, and
within that by development, so that a new period of data arrives it is simply stacked under the existing data.

However, any ordering will do. Let's call the row at which observation at (w, d) appears row i.

The parameter vector consists of the parameters for the levels for the accident years, the development year

trend parameters and the payment year trend parameters. A predictor variable is constructed corresponding to each



parameter. Each predictor has a'1' if the corresponding parameter is in the model for that observation, and '0' isit is
not.

Shown below is the parameter vector for the above model, and below that is shown the row of the set of

predictors corresponding to the observation at (w, d):

ﬂ: (al! v Qo1 Qs Apdyeee U, M! }/d! yd"'l! yS-11 12, oihwids wds oo IS)‘

=@, .. 00 1, 0, ..0, 1,..1, 0, ..0, 1,..1, 0, ..0)

Example

The purpose of this example is to illustrate the relationship between the layout of the triangle, the parameters

and the predictor variables. We have the following (small) triangle of incremental paid losses, adjusted for inflation
and normalized for exposures.

Y. Yi+Y2.
Py N P Y
oj ., 96 83 42
oy . 118 74
Oz . 109

If we were to begin with all possible parameters in the model, the data and predictor (independent) variables
could be set up as follows:

P Y ay a; a3 Y1 Y2 12 I3
96 4.56435 1 0 0 0 0 0 0
83 4.41884 1 0 0 1 0 1 0
42 3.73767 1 0 0 1 1 1 1

118 4.77069 0 1 0 0 0 1 0
74 4.30406 0 1 0 1 0 1 1
109 4.69135 0 0 1 0 0 1 1

Because the level is captured for each year by the o parameters, it is necessary to omit the constant term when

doing the regression.

A typical triangle will only need afew parametersin each direction. If amodel is missing a parameter it should
have, a pattern will appear in the residuals against the direction the parameter relates to. For example, if only a
single trend is fitted in the development year direction, but the run-off pattern in the data has a change in trends,

then that will be clear in the graph of standardized residuals against development years. On the other hand, if an



unnecessary parameter is included, the difference between the unnecessary parameter and the one before will not be

significantly different from zero.

2.2 Model for multiplelayers

When dealing with multiple layers, a good model is chosen for the data from the ground up, or the biggest
layer available, and then applied to al the other layers. After checking that the model fits for all the layers,

correlations between layers can be estimated by cal culating the correlation between the residuals for each layer.

From the correlations and the variances for each layer, the variance-covariance matrix between layers can be
estimated. Generalized least squares (GLS) can then be used to estimate the combined model to all layers at once.
Some parameters may be set to be equal between adjacent layers.

Some trends in a model estimated to a layer on its own, particularly to a narrow excess layer, may have large
standard error, making the estimate not significantly different from zero. However, it will not generally be
appropriate to set the trend to zero (especialy if it represents a rate of superimposed inflation that might reasonably
be expected to continue into the future). We simply don't have a credible estimate. However, once a final model has
been estimated to all the layers and appropriate reduction of the model undertaken (for example, some parameters
set to be equal to each other across layers), often the worrisome trend estimate can have a much smaller standard

error.

Many packages will perform GLS. See the Appendices for more details. The generalized least squares model
can also be implemented in a standard regression package by transforming the predictors. This is outlined in

Appendix 4.

2.3 Forecasting and reserving

Future (incremental) paid losses may be regarded as a sample path from the forecast (estimated) lognormal
distributions. The estimated distributions include both process risk and parameter risk. Forecasting of distributions
isdiscussed in Zehnwirth (1994).

The forecast distributions are accurate provided the assumptions made about the future are, and remain, true.
For example, if it is assumed that future payment/calendar year trend (inflation) has a mean of 10% and a standard
deviation of 2%, and in two years time it turns out that inflation is 20%, then the forecast distributions are far from

accurate.



Any prediction interval computed from the forecast distributions is conditional on the assumptions about the future
remaining true. The assumptions are in terms of mean trends, standard deviations of trends and distributions about

the trends.
Forecasting asingle layer model

On the log scale, forecasts operate just as with any normal regression model. Using standard regression results,
forecasts and standard errors on the log scale are: y; = x; ,@’ Var(y,-Vyi) = A (x' (XX) ™ x+ 1) (cal thisv), and
Cov(V;, )7]- Y= x' (XX)? X% (= cj, say). The X here is the matrix of predictors for the single layer model, of

course.

Onthe original (dollar) scale: if there are no exposures, and no adjustments for future inflation, the formulas
are

P =e""" va(P)= P?(e" -1), and Cov(P, P;)= R P (€ -1). Theseresuits follow directly from the

formulas for the mean and variance of alognormal distribution. If there are exposures, the fitted values ( f{ ) will be
multiplied by the appropriate exposure for their year, and that carries through the variances and covariances by

adjusting the P terms by the same factor; inflation factors, multiplied out to the appropriate payment year inflate

the values in anal ogous fashion.

Forecasts of sums (e.g. accident period totals, payment period totals, overall total), their standard deviations,
and covariance between totals can be obtained using the well known formulas for expectation and variances of sums

of random variables.
Forecasting multilayer models

Once the parameter estimates are available, forecasts on the log scale are produced in the obvious fashion, as
they would be for asingle layer model, but with the parameter estimates from the combined model. Variances and
covariances are obtained as with any GLS model. See Appendix 3. From the variance-covariance matrix of
forecasts, individual variances and covariances may be obtained directly, and the variance of a single element, or

covariances between elements obtained in the usual way, resulting in formulas similar to those given for asingle

layer.
Forecasts on the original (dollar) scale:

Calculations proceed from the log-scale forecasts in the same fashion as given for the single layer.



2.4 Predictive Aggregate L oss Distributions and Value-at-Risk

The distribution of sums of payments, for example, accident year outstanding payments, is the distribution of a
sum of correlated lognormal variables, under the model. Generally when forecasting accident or payment year
totals, or the overall outstandings, more information than just mean and standard deviation is required. It is not
possible to compute the distribution of the various totals analytically. Nor isit reasonable to assume that the total for
any year iswell approximated by a normal distribution. Given the small number of values in the sum, the typical
degrees of skewness in the forecast distributions, and the correlations between forecasts, it israre that the sample
size will be sufficient to apply the central limit theorem to the distribution of the total. The exact distribution of the
sum can be obtained by generating (simulating) samples from the estimated multivariate lognormal distributions.
The same could be done for payment year totals (important for obtaining the distributions of the future payment
stream), or for the overall total. Thisinformation is relevant to Dynamic Financial Analysis. Distributions for future
underwriting years can also be computed. This process can be repeated over and over to obtain the entire

distribution of any desired total to whatever level of accuracy is required.

It is important to note that there is a difference between a fitted distribution and the corresponding predictive
distribution. A predictive distribution necessarily incorporates parameter estimation error (parameter risk); a fitted
distribution does not. Ignoring parameter risk can result in substantial underestimation of reserves and premiums.
See the paper by Dickson, Tedesco and Zehnwirth (1998) for more details.

With knowledge of the entire predictive distribution of an aggregate forecadt, it is arelatively simple matter to
perform Va ue-at-Risk calculations. For any given quantile, the Value at Risk is simply that quantile minus the
provision. Alternatively, the maximum dollar loss at the 100(1—a)% confidence level isthe V-aR for the (1-a)

quantile.

If a reinsurer writes more than one layer on a single piece of long-tail business and aims for a 100 (1-a)%
security level — selecting the (1-a) quantile — on all the layers combined, then the risk margin per layer decreases
the more layers the company writes. This is always true, even though there is some dependence (and so correlation)

between the various layers.
Consider a company that writes n layers. Suppose that the standard error of loss reserve L(j) of layer j iss.e.(j),

and the correlation between layersi and j is r;. Under the assumption that the identified common trend changes are

the only ones that will occur in the future, the standard error for the combined layersL(1) +...+ L(n) is
se(Total) = [3 seX(j) + 2% rj se. (i) se. (j)]°°

If the risk margin for all layers combined is k x s.e.(Tota), where k is determined by the level of security
required, then the risk margin for layer j is



k x s.e(Tota) x se.(j)/ [se(D)+..+se(n)] <kxsel().

Of course, in general, we might expect layers to have similar future payment year trend changes, as they
generaly do in the past. In that situation, it would be useful to model the combined data from al of the layers in
guestion. Of course, where unobserved trend changes in layer i and j are related, then one could use s.e.(i) + s.e.(j)

as the upper bound of the standard error of L(i) + L(j).

2.5 Pricing afutureyear
Pricing an existing layer

If the layer in question is one observed in the past, or it can be constructed from information to hand, after
making some appropriate assumption about the corresponding exposure and for the a parameter for the new year
(the two assumptions are related, as the decision boils down to deciding about the change in the difference between
the log-exposure and the new level parameter from the last year), forecasts for the new accident year can be
obtained exactly as outlined in section 2.3. The total and standard deviation for that year could be used to calculate

the price for the corresponding layer, if a premium based on the mean, or mean + k standard deviationsis desired.

Asbefore, we can also simulate from the distribution of the total for the future accident year, alowing pricing
to be based on any percentile of the predictive distribution of the aggregate, and can be useful for planning/pricing

excess-type reinsurance on the aggregate for that line of business.
Estimating mean and standard deviation for an unobserved layer
If thereisonly one limit that is varying (say, al layers being considered have alower limit of zero, or no upper

limit), then we can simply examine the relation between the means of the price (and the standard deviation) and the

limit that varies, and fit that relationship with a smooth curve. For example, if we look at it graphically:

Price

10 20 50
Lower Limit (thousands)

Figure 5. Plot of mean price + one standard deviation, with smooth curves and interpolated values at an upper
limit of 30,000.



If both limits are varying, then we would need to examine the mean vs limit (and standard deviation vs limit)
relationshipsin two dimensions, which may require modeling of data for many pairs of limitsto get enough

information for the analysis.

3 Examples

Example 1: XS10 and P40X10

These are two reinsurance layers on the same business. Looking at a plot of the changing trends in the data, we see:
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Figure 6: XS10's changing trends. The average trend in the development year and payment year directions has

been removed.
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Figure 7: P40X10's changing trends. The average trend in the development year and payment year directions

has been removed. Note how the trend changes occur in the same years in both arrays.



Initial model selection

We will find a suitable model for one array (XS10) and use it as the starting point for a combined analysis. The

model has three trends in the development year direction (0-1, 1-3, and after 3). It has two accident year levels - one

before 1990, and one from 1990. There is superimposed inflation in the middle payment years (1991-93), but it is

zero everywhere else. There is heteroscedasticity in the data - the variance after delay 4 is larger, so correspondingly

lessweight is given to observations after that development year - about 0.219 of the weight to the earlier

observations.
XS10 40X10
Alpha Parameter Estimates Alpha Parameter Estimates
Acci Yr | Alpha SE. |T-Ratio |Diff. SE. T-Ratio |Acci Yr |Alpha |SE. T-Ratio | Diff. SE. T-Ratio
1985-89| 10.322| 0.2248| 45.92 1985-89| 10.4695| 0.2453| 42.67
1990-95| 8.8355| 0.2513| 35.16| -1.4865| 0.2474| -6.01]1990-95| 8.9959| 0.2853| 31.53| -1.4736] 0.297| -4.96
Gamma Parameter Estimates Gamma Parameter Estimates
Dev.Yr |Gamma | SE. |T-Rato | Diff. SE. T-Ratio | Dev. Yr | Gamma | S.E. T-Ratio | Diff. SE T-Ratio
1 24952 |0.2119 |11.77 1 2391 |0.2299 |104
2-3 0.0000 |0.0000 - -2.4952 |0.2119 |-11.77 |2-3 0.0000 |0.0000 - -2.391 |0.2299 |-104
4-10 -1.0688 |0.0904 |-11.82 |-1.0688 |0.0904 |-11.82 |[4-10 -1.142 ]0.1058 |-10.79 |-1.142 |0.1058 |-10.79
|ota Parameter Estimates |ota Parameter Estimates
Pay. Yr | lota SE. |T-Ratio |Diff. SE. T-Ratio |Pay. Yr |lota SE. T-Ratio | Diff. SE. T-Ratio
1989-90| 0.0000| 0.0000 - 1989-90| 0.0000| 0.0000 -
1991-93| 0.4919| 0.0893 551| 0.4919| 0.0893 5.51[1991-93| 0.3994| 0.1057 3.78| 0.3994| 0.1057 3.78
1994-95| 0.0000| 0.0000 - -0.4919| 0.0893]| -5.51]1994-95| 0.0000| 0.0000 - -0.3994| 0.1057| -3.78
Table 1. Parameter estimates for the same model estimated on the two layers.
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Figure 8. Residual plots from the fitted model to the XS10 data.




Estimation of the correlation between arrays:

We will estimate a single correlation between the two arrays. An initial examination of correlation against
delay — after combining some years to get adequate sample sizes — gives the impression of fairly constant
correlation except that it looks low in delays 6-10, taken together. After removing a single, somewhat discrepant,
observation in the tail of the XS10 project (which is also the x-component of point A below), the correlation does
not appear to change with delay. If the observation is retained, there is a minor indication that there may be a
decrease (the confidence intervals around the estimated correlations are quite wide). We proceed with the more

parsimonious assumption — there is no need to introduce an extralevel of complication based on an impression

caused by asingle point.
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Figure 9. Plot of corresponding weighted residuals for the two layers. Points A, B and C possibly don't
fit the main relationship between layers.

Taking into account the reduced weight to the observations after delay 4, the overall correlation between
the residuals from the two arraysis 0.781. Without point A, the correlation is 0.853. Without the three marked
points, the correlation is 0.957. We will proceed with correlation based on al of the data. The regression estimates

aregivenin Table 4:



Combined model

XS10 40X10-XS10
Years Estimate S.E. t-ratio Diff. S.E. t-ratio
Alpha 1985-89 10.3281 0.2100 49.19 0.1327 0.1481 0.90
P 1990-95 8.7682 0.2332 37.61 0.1146 0.1742 0.66
Gamma 0:1 2.4750 0.1980 12.50| -0.1075 0.1389 -0.77
3:10 -1.0811 0.0810 -13.34 0.0183 0.1012 0.18
lota 1991-93 0.5250 0.0822 6.39| -0.0684 0.0652 -1.05
Table 4. Parameter estimates for the combined model
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Figure 10. Fitted trends in the three directions and variances for the combined model. The fitted trends are

very similar.

Clearly not all the differences are required. Proceeding to eliminate the least significant parameters and re-

estimate at each stage, we obtain afinal model as shown below. A mere six parameters describe the trends in three

directions for both layers.

Final model:
XS10 40X10-XS10
Years Estimate S.E. t-ratio Diff. S.E. t-ratio
Alpha 1985-89 10.3745 0.2006 51.71 0.0000 0.0000 -
1990-95 8.8064 0.2239 39.33 0.0000 0.0000 -
Gamma 0:1 2.4386 0.1891 12.90 0.0000 0.0000 -
3:10 -1.0841 0.0773 -14.02 0.0000 0.0000 -
lota 1991-93 0.5212 0.0796 6.55| -0.0546 0.0242 -2.26

Table 3. Parameter estimates for the reduced model.



Standardized Resduals vs Dev. Year

Standardized Residuals vs Acci. Year
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Figure 11. Residual plots against the three directions, and normal scores plots of the residuals for each layer.

The plots ook reasonable, except, perhaps, for afew possible outliersin the left tail of the 40X10 layer.




ALL2M and ALL1IM

These are two reinsurance layers (limited to 2 million and 1 million) of along-tail line of business. AlI2M is

the base layer for this analysis. Aswe see from the figure below, the changesin trends in the two layers seem to

occur in the same places.
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Figure 12. Plot of residuals against the three directions and fitted values for the two layers. The average trend

in the payment year and development year directions has been removed so that the changesin trend can be seen.

Consequently, it makes sense to fit the same model (though with possibly different parameters) to both layers.

Table 1 lists the parameters for the model identified for the base layer and fitted to both layers. Note that thereis no

superimposed inflation in any of the models in the analysis of these arrays—1 (iota) is zero for all years.

Alpha Parameter Estimates

All2M All1IM
Acci. Alpha  S.E. t-ratio | Diff. S.E. tratio | Alpha S.E. t-ratio | Diff. S.E. t-ratio
Year
1985-89 | 8.1322 0.3316 24.52 7.6229 0.3300 23.10
1990-96 | 8.7119 0.2957 29.46|0.5797 0.1501 3.86| 8.3914 0.2943 28.52|0.7686 0.1494 5.15
1997-98 | 10.1524 0.6908 14.70| 1.4405 0.6243 2.31| 9.6168 0.6874 13.99|1.2254 0.6212 1.97
Gamma Parameter Estimates
All2M All1IM
Dev. |Gamma S.E. t-ratio Diff. S.E. tratio | Gamma S.E. t-ratio Diff. S.E. tratio
Year
0:1 4.4912 0.3570 12.58 4.4275 0.3552 12.46
1.2 1.5704 0.2593 6.06| -2.9207 0.5214 -5.60| 1.5157 0.2581 5.87| -2.9207 0.5214 -5.60
2:4 0.6755 0.1035 6.52| -0.8950 0.3280 -2.73| 0.6374 0.1030 6.19| -0.8950 0.3280 -2.73
4:7 0.0000 0.0000 - -0.6755 0.1035 -6.52| 0.0000 0.0000 - -0.6755 0.1035 -6.52
7:13 | -0.1820 0.0535 -3.40( -0.1820 0.0535 -3.40| -0.1911 0.0532 -3.59| -0.1820 0.0535 -3.40




Table 4. Parameter estimates for the same model estimated on the two layers.

The next step isto estimate the correlation between the layers. The correlation is high — 0.99027 — so a stable

regression algorithm becomes more important in this case. We then estimate the combined model in asingle

regression.

Combined model
Alli2M AllLM - AllI2M
Acci. Alpha  S.E. t-ratio | Diff.in S.E. t-ratio
Year Alpha
1985-89 | 8.1322 0.3316 24.52| -0.5093 0.0462 -11.03
1990-96 | 8.7119 0.2957 29.46| -0.3204 0.0412 -7.78
1997-98 | 10.1524 0.6908 14.70| -0.5355 0.0962 -5.57
All2M AllLM - All2M
Dev. | Gamma S.E. t-ratio Diff. in S.E. t-ratio
Year Gamma
0:1 | 4.4912 0.3570 12.58| -0.0637 0.0497 -1.28
1:2 | 15704 0.2593 6.06| -0.0548 0.0361 -1.52
2:4 | 0.6755 0.1035 6.52| -0.0381 0.0144 -2.64
4:7 | 0.0000 0.0000 - 0.0000 0.0000 -
7:13 | -0.1820 0.0535 -3.40| -0.0092 0.0074 -1.23

Table 5. Parameter estimates for the combined model — thisis the same model asin Table 4; the

correlation between layers doesn't affect the parameter estimates or standard errors.
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Figure 13. Fitted trends in the three directions and variances for the combined model. The fitted trends are
again very similar.



Only one of the parameters for the difference between layersis significantly different from zero in the full model.
Aswe eliminate non-significant parameters, the standard errors of the remaining parameters decrease. After
eliminating the difference between layers for the first and last gamma parameters (so percentage changes between
development years 0-1 and after development year 7 are treated as the same for the two layers), the remaining

difference parameters are all significant. The final model is below.

Final Model

All2M AllIM - Ali2M
Acci. Alpha  S.E. tratio | Diff.in S.E. t-ratio
Year Alpha

1985-89 | 8.1717 0.3316 24.65| -0.5617 0.0285 -19.73
1990-96 | 8.7440 0.2955 29.59| -0.3630 0.0231 -15.70
1997-98 | 10.2004 0.6920 14.74| -0.5993 0.0826 -7.25

All2M AllIM - All2M

Dev. |Gamma S.E. t-ratio Diff. in S.E. t-ratio
Year Gamma

0:1 44432 0.3561 12.48| 0.0000 0.0000 -
1:2 1.5832 0.2599 6.09| -0.0716 0.0329 -2.18
2:4 0.6777 0.1038 6.53| -0.0410 0.0142 -2.89
4.7 0.0000 0.0000 - 0.0000 0.0000 -
7:13 | -0.1889 0.0533 -3.54| 0.0000 0.0000 -

Table 6. The final combined model for All1M and All2M.

It is also important to examine some diagnostics for the combined model. Residual plots against devel opment

years, accident years, and payment years, and normal scores plots are below.
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Figure 14. Residual plots against the three directions, and normal scores plots of the residuals for the two

layers combined.

It appears that the changes between accident years 1989 and 1990 are not being picked up aswell as before,

even though there is a parameter there for each layer. Otherwise the diagnostics look reasonable.
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Appendices

Appendix 1: Multilayer models

Let there be k data triangles (one for each layer).

Call the lognormalized data from the first array Y, where Y1 = ( Y11, Yi2,..- Y1n)', With the observations stacked
up in order. Similarly, call the log-normalized data for the other layersYs, ... Y. Note that the two subscripts here

refer to the layer and the position in the vector, and not directly to their position in the triangle.

Let yi= (Y11, Yo1,--- Yia)' beal of thefirst observations. Further, let y,, ys, ... Y, bethe 2nd, 3rd, ... nth
observations. Let V, be the variance-covariance matrix of the error terms for the k observations making up y;. Then

the model becomes:
Vi=X G+ e Var(e) = V, t=1,2 .n

where X; and 3 are chosen depending on how the model is parameterized. For example, each layer may haveits
own parameters as with the individual regressions, or you might model each layer in terms of its differences from
the base layer, or in terms of differences from the previous layer. This last approach makes it easy to detect when

parameters don't change across adjacent layers. For that parameterization, X; and 3, are defined below.

Let Y=(yi, V2, ..., ¥) beal of the observations, where we have all the 'first' observations, then all the
'second' observations, and so on. Note that it is possible to stack the observations up in the other way, first array
above second array, and so on—Y* = (Y{, Y2, ..., Yi)', and this might be easier if you are using a package — but the
first formulation can make the computations simpler if you are implementing the algorithm yourself. If you change
the formulation to that layer-by-layer approach, then the X's and s are rearranged correspondingly. The same
values are al present, they just move in the matrix. The first formulation will be retained for now as it makes it

easier to discuss the relationships between layers, albeit one observation at atime.

Theregression for all of the arrays (layers) isthen:

Y=XB+e¢e Var(e) =V,

where X = (X{, X3, ... X)), B= B (= B= ...= (), and, suppressing zero elements,

Vi

\Z

V= V3

Vi




because V is of a special form — block diagonal — the regression can be implemented quite efficiently. With at least
some of the V, equal (normally they are all equal), any of several appropriately chosen algorithms will be fast. Note
that V is estimated from the variances to the layers and the correlation(s) between layers. If the correlations are very
high, numerical stability will be amore important consideration than speed, and the generalized least squares
algorithm must be selected for numerical stability. Some packages don't take great care to implement numerically
stable algorithms, and they may fail if the correlations between layers are very high. However most dedicated
statistical packages are stable.

Appendix 2: Theform of X, and 5

Let us take the form where we deal with differences between layers directly. Let X, be the design vector and S
the parameter vector for y;, and let . be the design vector and /3., the parameter vector for the difference between
layersy;; — y;: . Note that when the models are the same for each layer, as we will generally have, X = X ...= X, and
the S'sare all of the same form. Similarly, if the difference between layersis not set to zero, ., is also the same as
X1 and the SB'sfor the differences (which are the differences in regression parameters for the layers) are also of the

same form. Note that xy, isarow vector and Sy is a column vector. As before, blank elements indicate zeros.

Xat on

X1t Xo-1t Bo-1t
Xi=| Xt Xo.upr Xaat B=| Bsat

X1t Xo-1t Xa2t «o Xe(el)t Byt

Even though X; appears to be lower triangular above, it isn't, because the 'elements' are row vectors.

Note that when we multiply the i row of X by /3 that we obtain the mean of the base layer plus the difference
between the second layer and the base layer, plus the difference between the next layer and that one, and so on. For

example, for the third row (which represents the t" observation in layer 3), we obtain

E(Ya) = Xatfut + Xo-1,8o-1t + Xa21832¢ = E(Yae) + E(Yar — Vi) + E(Yar — Ya)

When we wish to set two parameters to be equal, we delete the columns of X and rows of £ corresponding to
the difference between them. With this parameterization, testing that a difference in parameters for two layersis

equal to zero issimply a matter of testing that the parameter for the difference is zero.



Appendix 3: Formulasfor multilayer forecasts

The mean forecast is given by \?f =X ,@’ where X; isthe matrix of predictorsfor those observations being forecast,

and ,é isthe estimated The variance-covariance matrix of forecastsis Var(\?f ) =X Var( [3) X=X (XVIX)T

Xf.
The above formulas apply whichever parameterization of X and Sis used.

Note that if the original model from which V' was estimated has sufficient sample size to estimate al the
parameters in the model, captures all the features of the data, and the only change to the model has been to eliminate
some parameters which are essentially zero, it should not be necessary to re-estimate any of the layer variances or
inter-layer covariances since the residual variances will be estimates of 1, and the residual covariances across layers

will be estimates of 0. However, it is easy to incorporate updated variance estimates if required.

Appendix 4: Implementation via regression for a two-layer model

Firstly the base layer is modeled, and then that model is fitted to the second layer and checked that itisa
reasonable model for each. The correlation between the residuals for the layers, and the residual variances are

calculated, from which an estimate of the covariance may be readily obtained.

Then the data from the two layers are put together into a single data set, but are transformed to independence
and normalized to have equal variance. First the observations in each layer are divided by their standard deviation
(givingy’, say). The observationsin the second layer are then further transformed to make them uncorrelated with

the first layer:

Y2t“ = (Y2t* —r ylt*)/(l - rz)

It doesn't really matter how you stack up the observations as long as you keep the relationships between the
observationsin each layer straight. It iseasier to do it layer by layer when working this way. The x's for each layer
are transformed with that same transformation that was used for their corresponding observation. The parameter

estimates produced from this transformed model are the same as those for the untransformed GL S model.



